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Abstract. The benchmark Problem 2 in Category 3 of the Third Computational
Aero-Acoustics (CAA) Workshop is solved using the space-time conservation ele-
ment and solution element (CE/SE) method. This problem concerns the unsteady
response of an isolated finite-span swept flat-plate airfoil bounded by two parallel
walls to an incident gust. The acoustic field generated by the interaction of the
gust with the flat-plate airfoil is computed by solving the 3D Euler equations in the
time domain using a parallel version of a 3D CE/SE solver. The effect of the gust
orientation on the far-field directivity is studied. Numerical solutions axe presented
and compared with analytical solutions, showing a reasonable agreement.

1 Introduction

The noise generated by the interaction of vortical disturbances originating
upstream with propeller or turbomachinery blades has been of great interest

in noise studies. A model problem regarding a one-dimensional vortical wave

interaction with an isolated finite-span swept flat-plate airfoil bounded by

two parallel walls was posed as a benchmark problem in Category 3 of the

Third CAA Workshop [1]. The effect of different gust orientations on the
far-field directivity is investigated here.

This problem is solved numerically by solving the unsteady 3D Euler

equations in the time domain using the space-time conservation element and
solution element (CE/SE) method. The CE/SE method is an innovative nu-

merical method [2-5]. It applies flux conservation to finite space-time vol-

umes, and achieves second-order accuracy in both space and time for uniform
space-time meshes. Its salient properties are summarized briefly as follows.

First, both local and global flux conservations are enforced in space and time
instead of in space only. Second, all the dependent variables and their spatial
derivatives are considered as individual unknowns to be solved for simul-

taneously at each grid point. Third, every CE/SE scheme is based upon a
non-dissipative scheme with addition of fully controllable numerical dissipa-

tion. This results in very low numerical dissipation. Fourth, the flux-based

specification of the CE/SE schemes gives rise in a natural fashion to a simple
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yet generally effective non-reflecting boundary condition, which is an impor-
tant issue in CAA. A detailed description of this method and accompanying

analysis can be found in [2-7]. Applications of this method to CAA problems

reveal that the CE/SE method can produce accurate results in a simple way

[8-11].

In this paper, a parallel version of the 3D CE/SE Euler solver is used

to compute the acoustic field generated by the interaction of a vortical gust
with an isolated swept flat-plate airfoil bounded by two parallel walls. Dif-

ferent spanwise wavenumbers of the gust are used to investigate the far-field

directivity.
In the following, the description of the benchmark problem is given first,

which is followed by the boundary and initial conditions used in the calcula-

tion, and numerical results and discussion.

2 Gust - Flat-Plate Airfoil Problem

Consider an isolated finite-span swept flat-plate airfoil bounded by two par-

allel walls shown in Fig. 1. The x-axis is aligned with the chord of the airfoil,

the y-axis is perpendicular to it and the z-axis is normal to the bounding
walls. The normal distance between walls, h, is 2.6c, where c is the chord

length of the fiat plate. The sweep angle of the flat-plate airfoil is 15 ° .
The mean flow is assumed to be uniform and aligned with the x-axis.

The mean flow variables are inflow velocity, Uo, static density, P0, and static

pressure, P0- The inflow Mach number, Mo, is 0.5. Flow variables are non-

dimensionalized by using a0(the speed of sound) as the velocity scale, c as

the length scale, c/ao as the time scale, Po as the density scale and poa_ as

the pressure scale. Thus the mean flow is described in dimensionless variables
as

_=1, _=0.5, o=0, e=0, p=l/v (1)

where V is the specific heat ratio and assumed to be 1.4.

The incident gust carried by the mean flow has x, y, and z velocity com-

ponents given by

u' = 0, v' = vG cos(kxx + kzz - wt), w' = 0 (2)

respectively, where vG = 0.05 and kx = 5.5, kz = 3.6m, with m = 0, 1, 2,
and w = Mokx, respectively. The corresponding period of the gust wave is

T = 21r/w. It is assumed that the gust is "frozen" and convected by the
uniform mean flow. Thus the gust satisfies the linearized Euler equations.

This implies that pr = pr = 0.

The gust is convected by the mean flow and interacts with the swept
flat-plate airfoil. Thus, acoustic waves are generated which propagate both

upstream and downstream. Let (u*, v*, w*, p*, p') represent the unsteady so-

lution due to the propagating acoustic waves, and define
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_=_2+u*, _=O+v*, _b=_+w*, /5=p+p*, /5=f+p*, (3)

which represent the mean flow and the acoustic waves. Thus, we have

u=fi+u I, v=£_+v _, w=zO+w _, p=,_+pr, p=fi+p,, (4)

where (u,v,w,p, p) is the solution of the total flowfield, including the mean

flow, the gust, and the acoustic waves.
In the current computation, the mean flow and the acoustic waves (_, _),_, 15,fi)

are computed by solving the nonlinear Euler equations. The convection of the

gust is not simulated here.

3 Initial and Boundary Conditions

.at t = 0, the time-marching variables in the whole domain are defined using

the mean flow variables, and their spatial derivatives are set as zero. At

the inlet, outlet, and the open boundary in y- direction, the time-marching
variables and their spatial derivatives at the nth time level, are specified using

the (n - 1/2)th time level value of the corresponding variables at the interior
spatial point of its immediate neighbor. It allows the flux to "stream" out of

the spatial domain smoothly with minimal reflection [7].

On the top and bottom wails bounding the flat-plate airfoil and the flat-

plate airfoil surface, it is assumed that the velocity (u, v, w) is tangent to the

wail/airfoil surface. By using Eq. (4), this implies that

nx¢_ + nz,_ + nz_ = -(nj + nvv' + nzw') (5)

where (nx, n_, nz) is any unit vector normal to the wail/airfoil surface at the

point under consideration.

On the symmetric plane at y = 0, the anti-symmetric condition is used
for the solution of the acoustic waves as follows:

p*(x,-y,z) = "p* (x,y, z), p'(x,-v,z) = "p'(x,v,z), = -
v*(x, -v, z) = v*(x,y,z), (6)

No grid points are located at the flat-plate airfoil leading and trailing

edges, in order to avoid the singular flow behavior.

4 Numerical Results and Discussion

A structured 281x71x41 hexahedrai grid is generated by using an algebraic
transformation in the computational domain of -7 < x < 7, 0 < y < 7, and

0 < z < h first. A slice of the grid in x-z planes is shown in Fig. 2. Each hex-

ahedron is cut into six tetrahedrons, which results in 4704000(280x70x40x6)

tetrahedrai cells in the computation. The parallel version of the 3D Euler
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solveris usedwith a = 0 and e = 0.5, where a and e are the parameters

connected with the specification of the numerical dissipation in the solver

[5]. A detailed description of the 3D Euler solver is referred to in [5] and the
parallelization part is given in [6]. In the current computation, At = T/168
is used.

The spanwise wavenumber kz = 3.6m with m = 0, 1, 2, corresponding

to three different gust orientations, are used here to study its effect on the
far-field directivity. The analytical solution of the RMS acoustic pressure on

the circle of radius 5 centered at (0, 0, h/2) on the middle plane between the

two bounding walls is available to compare with the corresponding numerical

result. In all figures, the acoustic pressure p* non-dimensionalized by va
is plotted. The time history of the acoustic pressure at point (-5,0, h/2),

which is located at the upstream on the specified circle, is shown in Fig. 3

for the three different values of m. It can be seen that (i) the solution is

fully converged by t = 50T for m = 0; (ii) a slight variation in the maximum
absolute value of the acoustic pressure is still observed for m = 1 and 2; and

(iii) the absolute amplitude of the acoustic pressure at the upstream decreases
when the value of m increases. The solution convergence is also checked by

comparing the RMS acoustic pressure on the specified circle at t = 40T and

t = 50T, which shows to be identical.

The computed result of the RMS acoustic pressure on the specified circle

normalized by the maximum RMS pressure value at m = 0 is plotted in Fig.

4, while the corresponding analytical solution taken from [1] is reproduced in

Fig. 5. It can be seen that both computed and analytical solutions show that

the RaMS pressure decreases when the spanwise wavenumber increases. The
computed far-field radiation pattern is similar to those shown in the analyti-

cal solution. However some discrepancies are also observed, which is possibly

caused by the non-reflecting boundary conditions used in the computation.
Some reflections are created at the outer boundaries. A larger computational

domain can be used to reduce the reflection errors from the outer boundary.

However, a larger domain involves extensive mesh points and the computa-

tional cost is too expensive.

The parallel 3D CE/SE code was run on Origin2000 clusters. For a mesh
of 4704000 cells, it takes around 35 hrs of wall-clock time to reach t = 50T

(16800 time iterations) using 32 CPUs.

5 Conclusion

The Problem 2 in Category 3 of the Third CAA Workshop has been solved

by using the 3D parallel CE/SE Euler solver. The numerical results of the
acoustic RMS pressure on the circle of radius 5 centered at (0, 0, h/2) on the

middle plane between two bounding walls are compared with the analytical
solution for three different gust orientations, showing a reasonable agreement.
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Fig. 1. Geometry of an isolated finite-span,

swept fiat-plate airfoil bounded by two walls, the x-z plane.
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Fig. 2. A slice of the hexahedral mesh in
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Fig. 4. The computed directivity pattern (1%MS pressure on a circle of radius 5

centered at point (0, 0, hi2) on the plane of z ----h/2) for the three different values

of m.
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Fig. 5. The corresponding directivity pattern exhibited by the analytical solution
for the three different values of m.


